
COUNTABLE SETS

2

Infinite sets are either:

• Countable

• Uncountable

3

Countable set:

There is a one to one correspondence

between

elements of the set

and

positive integers

4

Example:

Even integers: ,6,4,2,0

The set of even integers

is countable

Positive integers:

Correspondence:

,4,3,2,1

n2 corresponds to 1n

5

Example: The set of rational numbers

is countable

Rational numbers: ,
8

7
,

4

3
,

2

1

6

Naive Approach

Rational numbers: ,
3

1
,

2

1
,

1

1

Positive integers:

Correspondence:

,3,2,1

Doesn’t work:

we will never count numbers with nominator 2

,
3

2
,

2

2
,

1

2

7

Better Approach

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









8

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









9

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









10

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









11

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









12

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









13

Rational Numbers: ,
2

2
,

3

1
,

1

2
,

2

1
,

1

1

Correspondence:

Positive Integers: ,5,4,3,2,1

14

We proved:

 the set of rational numbers is countable

 by giving

 an enumeration procedure

15

Definition

An enumeration procedure for is a

Turing machine that generates

any string of in finite number of steps.

Let be a set of strings S

S

S

16

Enumeration

Machine for
,,, 321 sss

Ssss ,,, 321

Finite time: ,,, 321 ttt

strings

S

output

17

Enumeration Machine
Configuration

Time 0



0q

Time

sq

1x 1s

#

1t

#

18

Time

sq

3x 3s3t

Time

sq

2x 2s2t





19

A set is countable if there is an

enumeration procedure for it

20

Example:

The set of all strings

is countable.

},,{ cba

We will describe the enumeration procedure.

21

Naive procedure:

Produce the strings in lexicographic order:

a

aa

aaa

...

Doesn’t work!

Strings starting with will never be produced. b

22

Better procedure: Proper Order

Produce all strings of length 1

Produce all strings of length 2

Produce all strings of length 2

..........

23

Produce strings: cba ,,
aa

ab
ac
ba

bb

bc
ca

cb
cc
aaa
aab
aac
......

Length 2

Length 3

Length 1

Proper Order

......

24

Theorem:

The set of all Turing Machines

is countable.

Proof:

Find an enumeration procedure

for the set of Turing Machine strings.

Any Turing machine is a finite string

Encoded with a sequence of 0’s and 1’s.

25

1. Generate the next string of 0’s and 1’s

 in proper order

2. Check if the string defines a

 Turing Machine

 if YES: print string on output

 if NO: ignore string

Enumeration Procedure:

Repeat

UNCOUNTABLE SETS

 26

27

A set is uncountable if it is not countable

Definition:

28

Theorem:

Let be an infinite countable set.

The powerset of is uncountable.
S2 S

S

The power set of natural numbers has the same cardinality as the set of real numbers.

(Using the Cantor–Bernstein–Schröder theorem, it is easy to prove

 that there exists a bijection between the set of reals and the power set of the natural

numbers).

29

Proof:

Since is countable, we can write S

},,,{ 321 sssS 

Element of S

30

Elements of the powerset have the form:

},{ 31 ss

},,,{ 10975 ssss

31

We encode each element of the power set

with a string of 0’s and 1’s *

1s 2s 3s 4s 

}{ 1s

Powerset

element

Encoding

},{ 32 ss

},,{ 431 sss



1 0 0 0

1 0 1 1



0 1 1 0 




*Cantor’s diagonal argument

32

Let’s assume the contrary, that the

powerset is countable.

We can enumerate the elements of the

powerset.

33

1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

Powerset

element
Encoding

1t

2t

3t

4t









 

34

Take the powerset element

whose bits are the complements

of the diagonal.

35

1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

1t

2t

3t

4t









New element: 0011

(Diagonal complement)

36

The new element must be some it

This is impossible:

The i-th bit must be the complement

of itself.

37

We have contradiction!

Therefore the powerset is uncountable.

38

Theorem:

Let be an infinite countable set.

The powerset of is uncountable.
S2 S

S

39

Application: Languages

Alphabet: },{ ba

Set of Strings:

},,,,,,,,,{},{ * aabaaabbbaabaababaS 

infinite and countable

Powerset: all languages

}},,,}{,{},{},{{2 aababaabaaS 

1L 2L 3L 4L
uncountable



40

Languages: uncountable

Turing machines: countable

1L 2L 3L kL

1M 2M 3M

 

?

There are infinitely many more languages

than Turing machines!

41

There are some languages not accepted

by Turing Machines.

These languages cannot be described

by algorithms.

RECURSIVELY ENUMERABLE LANGUAGES

AND

RECURSIVE LANGUAGES

 42

43

Definition:

A language is recursively enumerable

if some Turing machine accepts it.

44

For a string :

 Let be a recursively enumerable language L

and be the Turing Machine that accepts it. M

Lw

w

if then halts in a final state M

Lwif then halts in some state M

or loops forever

45

Definition:

A language is recursive

if some Turing machine accepts it

and halts on any input string.

In other words:

 A language is recursive if there is

 a membership algorithm for it

46

For a string :

 Let be a recursive language L

 and be the Turing Machine that accepts it. M

Lw

w

if then halts in a final state. M

Lwif then halts in a non-final state. M

47

We will prove:

1. There is a specific language

 which is not recursively enumerable.

2. There is a specific language

 which is recursively enumerable

 but not recursive.

48

Recursive

Recursively Enumerable

Non Recursively Enumerable

49

First we prove:

• If a language is recursive then

 there is an enumeration procedure for it.

• A language is recursively enumerable

 if and only if

 there is an enumeration procedure for it.

50

Theorem:

if a language is recursive then

there is an enumeration procedure for it.

L

51

Proof:

MM
~

Enumeration Machine

Accepts L
Enumerates all

strings of input alphabet

52

Enumeration procedure

Repeat:

M
~

generates a string

M

w

checks if Lw

YES: print to output w

NO: ignore w

End of proof

53

Theorem:

if language is recursively enumerable

then there is

an enumeration procedure for it.

L

54

Proof:

MM
~

Enumeration Machine

Accepts L
Enumerates all

strings of input alphabet

55

Enumeration procedure

Repeat: M
~

generates a string

M

w

checks if Lw

YES: print to output w

NO: ignore w

NAIVE APPROACH

Problem: If

machine may loop forever

Lw

M

56

M
~

M

1w

executes first step on

BETTER APPROACH

1w

M
~

generates second string 2w

M executes first step on 2w

second step on 1w

generates first string

57

M
~

Generates third string 3w

M executes first step on 3w

second step on 2w

third step on 1w

And so on............

58

1w 2w 3w 4w 

1

Move

2

3





  

   

   

59

If for string

machine halts in a final state

then it prints on the output.

M

w

w

End of proof

60

Theorem:

If for language

there is an enumeration procedure

then is recursively enumerable.

L

L

61

Proof:

w

Input Tape

Enumerator

for L
Compare

Machine that

accepts L

62

Turing machine that accepts L

Repeat:

• Using the enumerator,

 generate the next string of L

For input string w

• Compare generated string with w

If same, accept and exit loop

End of proof

63

This is not a membership algorithm.

Why?

Question:

Answer:

The enumeration procedure

may not produce strings in proper order

64

We have shown:

A language is recursively enumerable

if and only if

there is an enumeration procedure for it.

A LANGUAGE WHICH

IS NOT

RECURSIVELY ENUMERABLE

 65

66

We search for a language that

is not Recursively Enumerable.

This language is not accepted by any

Turing Machine.

67

Consider alphabet }{a

Strings: ,,,, aaaaaaaaaa

1a 2a 3a 4a 

68

Consider Turing Machines

that accept languages over alphabet }{a

They are countable:

,,,, 4321 MMMM

69

Example language accepted by

},,{)(aaaaaaaaaaaaML i 

},,{)(642 aaaML i 

iM

Alternative representation

1a 2a 3a 4a 5a 6a 7a

)(iML



0 1 1 10 0 0 

70

1a 2a 3a 4a

)(1ML



0 1 10 

)(2ML

)(3ML

01 0 1 

0 1 11 

)(4ML 0 10 0

71

Consider the language

)}(:{ i
ii MLaaL 

L consists of the 1’s on the diagonal

72

1a 2a 3a 4a

)(1ML



0 1 10 

)(2ML

)(3ML

01 0 1 

0 1 11 

)(4ML 0 10 0

},,{ 43 aaL 

73

Consider the language

)}(:{ i
ii MLaaL 

L consists from of 0’s on the diagonal

)}(:{ i
ii MLaaL 

L

74

1a 2a 3a 4a

)(1ML



0 1 10 

)(2ML

)(3ML

01 0 1 

0 1 11 

)(4ML 0 10 0

},,{ 21 aaL 

75

Theorem:

Language is not recursively enumerable. L

76

Proof:

 is recursively enumerable L

Assume on the contrary that

There must exist some machine

that accepts

kM

L

LML k )(

77

1a 2a 3a 4a

)(1ML



0 1 10 

)(2ML

)(3ML

01 0 1 

0 1 11 

)(4ML 0 10 0

Question: ?1MMk 

78

1a 2a 3a 4a

)(1ML



0 1 10 

)(2ML

)(3ML

01 0 1 

0 1 11 

)(4ML 0 10 0

Answer: 1MMk 
)(

)(

1
1

1

MLa

MLa k





79

1a 2a 3a 4a

)(1ML



0 1 10 

)(2ML

)(3ML

01 0 1 

0 1 11 

)(4ML 0 10 0

Question: ?2MMk 

80

1a 2a 3a 4a

)(1ML



0 1 10 

)(2ML

)(3ML

01 0 1 

0 1 11 

)(4ML 0 10 0

Answer: 2MMk 
)(

)(

2
2

2

MLa

MLa k





81

1a 2a 3a 4a

)(1ML



0 1 10 

)(2ML

)(3ML

01 0 1 

0 1 11 

)(4ML 0 10 0

Question: ?3MMk 

82

1a 2a 3a 4a

)(1ML



0 1 10 

)(2ML

)(3ML

01 0 1 

0 1 11 

)(4ML 0 10 0

Answer: 3MMk 
)(

)(

3
3

3

MLa

MLa k





83

Similarly: ik MM 

)(

)(

i
i

k
i

MLa

MLa





)(

)(

i
i

k
i

MLa

MLa





for any i

Because either:

or

84

Therefore the machine cannot exist kM

CONTRADICTION!!!

The language

is not recursively enumerable.

L

End of proof

85

Observation:

There is no algorithm that

describes L

(otherwise it would be accepted by

 a Turing Machine)

A LANGUAGE

WHICH IS RECURSIVELY ENUMERABLE

AND NOT RECURSIVE

 86

87

We want to find a language which

There is a

Turing Machine

that accepts

the language

The machine

doesn’t

necessarily halt

on any input

Is recursively

enumerable

But not

recursive

88

We will prove that the language

)}(:{ i
ii MLaaL 

Is recursively enumerable

but not recursive.

89

The language

Theorem:

)}(:{ i
ii MLaaL 

is recursively enumerable

90

Proof:

We will give a Turing Machine that

accepts L

91

Turing Machine that accepts L

For any input string w

• Write
iaw 

• Find Turing machine iM

(using the enumeration procedure

 for Turing Machines)

• Simulate on input iM ia

• If accepts, then accept iM w

End of proof

92

Observation:

)}(:{ i
ii MLaaL 

)}(:{ i
ii MLaaL 

Recursively enumerable

Not recursively enumerable

(Thus, not recursive)

93

Theorem:

The language)}(:{ i
ii MLaaL 

is not recursive.

94

Proof:

Assume on the contrary that is recursive.

 Then is recursive:

L

L

Take the Turing Machine that accepts M L

 halts on any input M

If accepts then reject

If rejects then accept

M

M

95

Therefore:

L recursive

But we know:

L not recursively enumerable

thus, not recursive

CONTRADICTION!

Therefore, is not recursive L

End of proof

96

Recursive

Recursively Enumerable

Non Recursively Enumerable

L

L

