COUNTABLE SETS

Infinite sets are either:

 Countable

 Uncountable

Countable set:

There Is a one to one correspondence
between

elements of the set
and
positive integers

Example: The set of even integers
IS countable

Even integers: 0, 2, 4, 6, ...

Correspondence:

\/ \/

Positive integers: 1, 2, 3, 4, ...

2n corresponds to

Example: The set of rational numbers
IS countable

. 1 3 7
Rational numbers: = — ...
2 4 8

Naive Approach

T 111
Rational numbers: 1" 92" 3’
Correspondence:

Positive integers: 1, 2, 3, ...

Doesn’t work:
we will never count numbers with nominator 2

2 2 2 °

12 3

™ | < |

N O FPlW

(GO NN

N
GO
N[N

=
N | =

Rational Numbers:

Correspondence:

Positive Integers: 1, 2, 3, 4, 5, ...

We proved:

the set of rational numbers Is countable

by giving
an enumeration procedure

Definition

Let S be a set of strings

An enumeration procedure for S is a
Turing machine that generates
any string of S in finite number of steps.

strings $1, 9, 53,..- €9

Enumeration output
Machine for S

> 3,59, 8S3,...

[[/

Finite time: 1, Ip, 13,...

Enumeration Machine

Time O

Time Y

Configuration

##

Jo

A set Is countable if there Is an
enumeration procedure for it

Example:

The set of all strings ~ {a,b,c}"
IS countable.

We will describe the enumeration procedure.

Nalve procedure:

Produce the strings in lexicographic order:
d

ad
aaad

Doesn’t work!
Strings starting with b will never be produc@

Better procedure: Proper Order

Produce all strings of length 1

Produce all strings of length 2

Produce all strings of length 2

Produce strings: ~ a,b,c_ Length1
dd

ab
ac

ba
bh — Length?

bc
Proper Order ca

cb
ccJ
aaa
aab

aacC

Theorem:

The set of all Turing Machines
IS countable.
Proof:

Any Turing machine is a finite string
Encoded with a sequence of O's and 1's.

Find an enumeration procedure
for the set of Turing Machine strings. @

Enumeration Procedure:

Repeat

1. Generate the next string of 0's and 1's
INn proper order

2. Check if the string defines a
Turing Machine
If YES: print string on output
If NO: Ignore string @

UNCOUNTABLE SETS

Definition:

A set IS uncountable If it Is not countable

Theorem:

Let S be an infinite countable set.

The powerset 2° of S is uncountable.

The power set of natural numbers has the same cardinality as the set of real numbers.
(Using the Cantor—Bernstein—Schroder theorem, it is easy to prove
that there exists a bijection between the set of reals and the power set of the natur

numbers). Q

Proof:

Since S is countable, we can write

S ={51,52,53;...}

/

Element of S

Elements of the powerset have the form:

{s1,83}
{S5,57,59,510}

We encode each element of the power set
with a string of O's and 1's *

Encoding
Powerset
element SL 52 33 34
{s1} 1 0 0 0
{S2,53} 0 1 1 0
1 0 1 1

{51,53,54}

*Cantor’s diagonal argument

Let's assume the contrary, that the
powerset Is countable.

We can enumerate the elements of the
powerset.

Take the powerset element
whose bits are the complements
of the diagonal.

The new element must be some [

This Is impossible:

The I-th bit must be the complement
of itself.

We have contradiction!

Therefore the powerset is uncountable.

Theorem:

Let S be an infinite countable set.

The powerset 2° of S is uncountable.

Application: Languages
Alphabet: {a,b}
Set of Strings:
S :{a,b}* ={A1,a,b,aa,ab,ba,bb,aaa,aab,.. .}

Infinite and countable

Powerset: all languages

={{1}.{a},{a,b}{aa,ab, aab} .}

L L, Lj L4 @
uncountable

Languages: uncountable

L L Ly Ly
Vo l
M; M, Mg ?

Turing machines: countable

There are Infinitely many more languages
than Turing machines! @

here are some languages not accepted
by Turing Machines.

These languages cannot be described
by algorithms.

RECURSIVELY ENUMERABLE LANGUAGES
AND
RECURSIVE LANGUAGES

Definition:

A language is recursively enumerable
If some Turing machine accepts It.

Let L be a recursively enumerable language

and M be the Turing Machine that accepts it.

For a string w

f welL then M halts in a final state

f weglL then M halis in some state

or loops forever @

Definition:

A language Is recursive

If some Turing mac
and halts on any In

In other words:

nine accepts it

out string.

A language Is recursive If there Is
a membership algorithm for it

Let L be a recursive language

and M be the Turing Machine that accepts it.

For a string W :

f wel then M halts in a final state.

f we L then M halts in a non-final state.

We will prove:

1. There Is a specific language
which Is not recursively enumerable.

2. There Is a specific language
which Is recursively enumerable
but not recursive.

Non Recursively Enumerable

Recursively Enumerable

First we prove:

 |f a language Is recursive then
there Is an enumeration procedure for It.

* Alanguage is recursively enumerable
If and only If
there Is an enumeration procedure for It.

Theorem:

if a language L is recursive then
there iIs an enumeration procedure for It.

Proof:

Enumeration Machine

N |\7|' M

ha A

/ \

En.umerat.es all Accepts Q
strings of input alphabet

Enumeration procedure

Repeat:

—~

M generates a string w

M checks if wWel
YES: print W to output

NO: lgnore w

End of proof

Theorem:

if language L is recursively enumerable
then there Is
an enumeration procedure for it.

Proof:

Enumeration Machine

N |\7|' M

ha A

/ \

En.umerat.es all Accepts Q
strings of input alphabet

NAIVE APPROACH
Enumeration procedure

—~

Repeat: M generates a string W

M checks if wel
YES: print w to output

NO: Ignhore W

Problem: 1T weglL
machine M may loop forever

BETTER APPROACH

—~

M generates first string Wy

M executes first step on Wy

—~

M generates second string W2

M executes first step on Wy

second step on W @

—~

M Generates third string Wy

M executesfirststepon Wg

second step on - Wy

third step on Wy

And so on............

It for string W
machine M halts in a final state
then it prints w on the output.

End of proof

Theorem:

If for language L
there Is an enumeration procedure
then Lis recursively enumerable.

Proof:

Input

ape

Machine that
accepts L

Enumerator
for L

Compare

Turing machine that accepts L

For input string w

Repeat:

 Using the enumerator,
generate the next string of L

 Compare generated string with W

If same, accept and exit loop

End of proof

Question:

This Is not a membership algorithm.
Why?

Answer:

The enumeration procedure
may not produce strings in proper order

We have shown:

A language is recursively enumerable
If and only if
there Is an enumeration procedure for it.

A LANGUAGE WHICH
IS NOT
RECURSIVELY ENUMERABLE

We search for a language that
IS not Recursively Enumerable.

"his language Is not accepted by any
"uring Machine.

Consider alphabet {a}

Strings: d, dd, ddd, dddad, ...

Consider Turing Machines
that accept languages over alphabet {a}

They are countable:

My, Mo, Ma, My, ...

M

L(M;) ={aa,aaaa,aaaaaa}

L(M;) :{az,a4,a6}

L(M;)

L(Mq)
L(M>)

L(M3)

L(My)

Consider the language
L={a':a' eL(M;)}

| consists of the 1's on the diagonal

L(Mq)
L(M>)

L(M3)

L(My)

Consider the language L

L={a':a' e L(M)}

L={a':a' ¢L(M)}

L consists from of 0’s on the diagonal

L(Mq)
L(M>)

L(M3)

L(My)

Theorem:

Language L is not recursively enumerable.

Proof:

Assume on the contrary that

L is recursively enumerable

There must exist some machine M

that accepts L

L(M) =L

at a
L(Mp) (0) 1
(M) 1 (o)
L(M3) | 0 1
L(Mg) 0 0

d d d d
(M) (0) 1 0 1
(M) 1 (0) 0 1
L(M3) | 0 1 1 1
L(Mg) | O 0 O 1

at a
L(Mp) (0) 1
(M) 1 (o)
L(M3) | 0 1
L(Mg) 0 0

d d d d
(M) (0) 1 0 1
(M) 1 (0) 0 1
L(M3) | 0 1 1 1
L(Mg) | O 0 O 1

at a
L(Mp) (0) 1
(M) 1 (o)
L(M3) | 0 1
L(Mg) 0 0

d d d d
(M) (0) 1 0 1
(M) 1 (0) 0 1
L(M3) | 0 1 1 1
L(Mg) | O 0 O 1

Mk?ﬁMi i

3l e L(My) al ¢ L(My)
a' ¢ L(M;) a' e L(M;)

Therefore the machine M cannot exist

CONTRADICTION!!!

The language L
IS not recursively enumerable.

End of proof

Observation:

There Is no algorithm that

describes L

(otherwise it would be accepted by
a Turing Machine)

A LANGUAGE
WHICH IS RECURSIVELY ENUMERABLE
AND NOT RECURSIVE

We want to find a language which

But not
recursive

Is recursively
enumerable

‘hereis a The machine
"uring Machine doesn’t

nat accepts necessarily halé
ne language on any input

We will prove that the language
L={a':a' e L(M;)}

Is recursively enumerable
but not recursive.

Theorem:
The language L :{ai :ai e L(Mj)}

IS recursively enumerable

Proof:

We will give a Turing Machine that
accepts L

Turing Machine that accepts |
For any input string W
« Write W= ai
» Find Turing machine M;

(using the enumeration procedure
for Turing Machines)

- Simulate M; on input g!

- If Mj accepts, then accept w

End of proof

Observation:

Recursively enumerable

L={a':a' e L(M)}

Not recursively enumerable
L={a':a' ¢L(M)}

(Thus, not recursive)

Theorem:

The language L :{ai a e L(M;)}

IS NOt recursive.

Proof:
Assume on the contrary that L is recursive.
Then L is recursive:

Take the Turing Machine M that accepts L

M halts on any input

If M accepts then reject
If M rejects then accept @

Therefore:

| recursive

But we know:

L not recursively enumerable
thus, not recursive

CONTRADICTION!

Therefore, L is not recursive

End of proof

Non Recursively Enumerable
L

Recursively Enumerable

L

