
COUNTABLE SETS 
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Infinite sets are either: 

• Countable 

 

• Uncountable 
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Countable set: 

There is a one to one correspondence 

between  

elements of the set 

and  

positive integers 
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Example: 

Even integers: ,6,4,2,0

The set of even integers  

is countable 

Positive integers: 

Correspondence: 

,4,3,2,1

n2 corresponds to 1n
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Example: The set of rational numbers 

is countable 

Rational numbers: ,
8

7
,

4

3
,

2

1
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Naive Approach 

Rational numbers: ,
3

1
,

2

1
,

1

1

Positive integers: 

Correspondence: 

,3,2,1

Doesn’t work: 

we will never count numbers with nominator 2 

,
3

2
,

2

2
,

1

2



7 

Better Approach 
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
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Rational Numbers: ,
2

2
,

3

1
,

1

2
,

2

1
,

1

1

Correspondence: 

Positive Integers: ,5,4,3,2,1
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We proved: 

 

     the set of rational numbers is countable 

     by giving 

     an enumeration procedure  
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Definition 

An enumeration procedure for       is a 

Turing machine that generates 

any string of     in finite number of steps.  

Let     be a set of strings  S

S

S
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Enumeration 

Machine for  
,,, 321 sss

Ssss ,,, 321

Finite time: ,,, 321 ttt

strings 

S

output 
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Enumeration Machine 
Configuration 

Time 0 



0q

Time 

sq

1x 1s

#

1t

#
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Time 

sq

3x 3s3t

Time 

sq

2x 2s2t




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A set is countable if there is an 

enumeration procedure for it 
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Example: 

The set of all strings 

is countable.  

},,{ cba

We will describe the enumeration procedure. 
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Naive procedure: 

Produce the strings in lexicographic order: 

a

aa

aaa

...

Doesn’t work! 

Strings starting with     will never be produced.  b
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Better procedure: Proper Order 

 

Produce all strings of length 1 

 

Produce all strings of length 2 

 

Produce all strings of length 2 

 

.......... 
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Produce strings: cba ,,
aa

ab
ac
ba

bb

bc
ca

cb
cc
aaa
aab
aac
......

Length 2 

Length 3 

Length 1 

Proper Order 

......
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Theorem: 

The set of all Turing Machines 

is countable. 

Proof: 

Find an enumeration procedure  

for the set of Turing Machine strings. 

Any Turing machine is a finite string 

Encoded with a sequence of 0’s and 1’s. 
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1.  Generate the next string of 0’s and 1’s 

    in proper order 

 

2.  Check if the string defines a  

    Turing Machine 

           if YES: print string on output 

           if NO:   ignore string 

Enumeration Procedure: 

Repeat 



UNCOUNTABLE SETS 

  26 
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A set is uncountable if it is not countable 

Definition: 
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Theorem: 

Let     be an infinite countable set. 

 

The powerset       of      is uncountable.  
S2 S

S

The power set of natural numbers has the same cardinality as the set of real numbers. 

(Using the Cantor–Bernstein–Schröder theorem, it is easy to prove 

 that there exists a bijection between the set of reals and the power set of the natural 

numbers). 
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Proof: 

Since     is countable, we can write  S

},,,{ 321 sssS 

Element of S
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Elements of the powerset have the form: 

},{ 31 ss

},,,{ 10975 ssss
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We encode each element of the power set 

with a string of 0’s and 1’s * 

1s 2s 3s 4s 

}{ 1s

Powerset 

element 

Encoding 

},{ 32 ss

},,{ 431 sss



1 0 0 0

1 0 1 1



0 1 1 0 




*Cantor’s diagonal argument 
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Let’s assume the contrary, that the 

powerset is countable. 

We can enumerate the elements of the 

powerset. 
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1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

Powerset  

element 
Encoding 

1t

2t

3t

4t









 
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Take the powerset element 

whose bits are the complements  

of the diagonal. 
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1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

1t

2t

3t

4t









New element: 0011

(Diagonal complement) 
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The new element must be some  it

This is impossible: 

The i-th bit must be the complement 

of itself. 
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We have contradiction! 

 

 

 

Therefore the powerset is uncountable. 



38 

Theorem: 

Let      be an infinite countable set. 

 

The powerset       of     is uncountable.  
S2 S

S
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Application: Languages 

Alphabet: },{ ba

Set of Strings: 

},,,,,,,,,{},{ * aabaaabbbaabaababaS 

infinite and countable 

Powerset: all languages 

}},,,}{,{},{},{{2 aababaabaaS 

1L 2L 3L 4L
uncountable 


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Languages: uncountable 

Turing machines: countable 

1L 2L 3L kL

1M 2M 3M

 

?

There are infinitely many more languages 

than Turing machines! 
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There are some languages not accepted 

by Turing Machines. 

These languages cannot be described 

by algorithms. 



RECURSIVELY ENUMERABLE LANGUAGES 

AND  

RECURSIVE LANGUAGES 

  42 
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Definition: 

A language is recursively enumerable 

if some Turing machine accepts it. 
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For a string      : 

  Let      be a recursively enumerable language L

and       be the Turing Machine that accepts it. M

Lw

w

if then       halts in a final state  M

Lwif then       halts in some state M

or loops forever 
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Definition: 

A language is recursive 

if some Turing machine accepts it 

and halts on any input string. 

In other words: 

     A language is recursive if there is 

      a membership algorithm for it 
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For a string     : 

   Let     be a recursive language L

  and      be the Turing Machine that accepts it. M

Lw

w

if then      halts in a final state. M

Lwif then      halts in a non-final state. M
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We will prove: 

1. There is a specific language 

    which is not recursively enumerable. 

2. There is a specific language 

    which is recursively enumerable 

    but not recursive. 
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Recursive 

Recursively Enumerable 

Non Recursively Enumerable 
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First we prove: 

•  If a language is recursive then   

   there is an enumeration procedure for it. 

•  A language is recursively enumerable  

    if and only if  

    there is an enumeration procedure for it. 
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Theorem: 

if a language     is recursive then   

there is an enumeration procedure for it. 

L
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Proof: 

MM
~

Enumeration Machine 

Accepts  L
Enumerates all 

strings of input alphabet 
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Enumeration procedure 

Repeat: 

M
~

generates a string  

M

w

checks  if Lw

YES:   print       to output  w

NO:    ignore w

End of proof 
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Theorem: 

if language     is recursively enumerable  

then there is 

an enumeration procedure for it. 

L
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Proof: 

MM
~

Enumeration Machine 

Accepts  L
Enumerates all 

strings of input alphabet 
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Enumeration procedure 

Repeat: M
~

generates a string  

M

w

checks  if Lw

YES:   print       to output  w

NO:    ignore w

NAIVE APPROACH 

Problem: If                 

machine       may loop forever   

Lw

M
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M
~

M

1w

executes first step on  

BETTER APPROACH 

1w

M
~

generates second string  2w

M executes first step on  2w

second step on  1w

generates first string  
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M
~

Generates third string  3w

M executes first step on  3w

second step on  2w

third step on  1w

And so on............ 
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1w 2w 3w 4w 

1 

Move 

2 

3 





  

   

   
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If for string        

machine      halts in a final state 

then it prints     on the output.  

M

w

w

End of proof 
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Theorem: 

If for language       

there is an enumeration procedure 

then    is recursively enumerable. 

L

L
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Proof: 

w

Input Tape 

Enumerator 

for L
Compare 

Machine that  

accepts  L
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Turing machine that accepts  L

Repeat: 

• Using the enumerator, 

   generate the next string of L

For input string  w

• Compare generated string with  w

If same, accept and exit loop 

End of proof 
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This is not a membership algorithm. 

Why?  

Question: 

 

Answer: 

The enumeration procedure  

may not produce strings in proper order 
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We have shown: 

A language is recursively enumerable  

if and only if  

there is an enumeration procedure for it. 



A LANGUAGE WHICH  

IS NOT 

RECURSIVELY ENUMERABLE 

  65 
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We search for a language that 

is not Recursively Enumerable. 

This language is not accepted by any 

Turing Machine. 
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Consider alphabet }{a

Strings: ,,,, aaaaaaaaaa

1a 2a 3a 4a 
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Consider Turing Machines 

that accept languages over alphabet }{a

They are countable: 

,,,, 4321 MMMM
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Example language accepted by  

},,{)( aaaaaaaaaaaaML i 

},,{)( 642 aaaML i 

iM

Alternative representation 

1a 2a 3a 4a 5a 6a 7a

)( iML



0 1 1 10 0 0 
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1a 2a 3a 4a

)( 1ML



0 1 10 

)( 2ML

)( 3ML

01 0 1 

0 1 11 

)( 4ML 0 10 0
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Consider the language 

)}(:{ i
ii MLaaL 

L consists of the 1’s on the diagonal 
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1a 2a 3a 4a

)( 1ML



0 1 10 

)( 2ML

)( 3ML

01 0 1 

0 1 11 

)( 4ML 0 10 0

},,{ 43 aaL 
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Consider the language 

)}(:{ i
ii MLaaL 

L consists from of 0’s on the diagonal 

)}(:{ i
ii MLaaL 

L
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1a 2a 3a 4a

)( 1ML



0 1 10 

)( 2ML

)( 3ML

01 0 1 

0 1 11 

)( 4ML 0 10 0

},,{ 21 aaL 
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Theorem: 

Language     is not recursively enumerable. L
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Proof: 

      is recursively enumerable L

Assume on the contrary that  

There must exist some machine 

that accepts  

kM

L

LML k )(
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1a 2a 3a 4a

)( 1ML



0 1 10 

)( 2ML

)( 3ML

01 0 1 

0 1 11 

)( 4ML 0 10 0

Question: ?1MMk 
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1a 2a 3a 4a

)( 1ML



0 1 10 

)( 2ML

)( 3ML

01 0 1 

0 1 11 

)( 4ML 0 10 0

Answer: 1MMk 
)(

)(

1
1

1

MLa

MLa k




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1a 2a 3a 4a

)( 1ML



0 1 10 

)( 2ML

)( 3ML

01 0 1 

0 1 11 

)( 4ML 0 10 0

Question: ?2MMk 
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1a 2a 3a 4a

)( 1ML



0 1 10 

)( 2ML

)( 3ML

01 0 1 

0 1 11 

)( 4ML 0 10 0

Answer: 2MMk 
)(

)(

2
2

2

MLa

MLa k




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1a 2a 3a 4a

)( 1ML



0 1 10 

)( 2ML

)( 3ML

01 0 1 

0 1 11 

)( 4ML 0 10 0

Question: ?3MMk 
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1a 2a 3a 4a

)( 1ML



0 1 10 

)( 2ML

)( 3ML

01 0 1 

0 1 11 

)( 4ML 0 10 0

Answer: 3MMk 
)(

)(

3
3

3

MLa

MLa k




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Similarly: ik MM 

)(

)(

i
i

k
i

MLa

MLa





)(

)(

i
i

k
i

MLa

MLa





for any  i

Because either: 

or 
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Therefore the machine            cannot exist  kM

CONTRADICTION!!! 

The language 

is not recursively enumerable. 

L

End of proof 
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Observation: 

There is no algorithm that 

describes L

(otherwise it would be accepted by 

 a Turing Machine) 



A LANGUAGE  

WHICH IS RECURSIVELY ENUMERABLE 

AND NOT RECURSIVE 

  86 



87 

We want to find a language which 

There is a  

Turing Machine  

that accepts  

the language 

The machine 

doesn’t 

necessarily halt  

on any input 

Is recursively  

enumerable 

But not 

recursive 
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We will prove that the language 

)}(:{ i
ii MLaaL 

Is recursively enumerable 

but not recursive. 
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The language 

Theorem: 

)}(:{ i
ii MLaaL 

is recursively enumerable 
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Proof: 

We will give a Turing Machine that 

accepts  L
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Turing Machine that accepts  L

For any input string  w

• Write 
iaw 

• Find Turing machine iM

(using the enumeration procedure 

 for Turing Machines) 

• Simulate       on input iM ia

• If       accepts, then accept  iM w

End of proof 
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Observation: 

)}(:{ i
ii MLaaL 

)}(:{ i
ii MLaaL 

Recursively enumerable 

Not recursively enumerable 

(Thus, not recursive) 
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Theorem: 

The language )}(:{ i
ii MLaaL 

is not recursive. 
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Proof: 

Assume on the contrary that     is recursive. 

   Then     is recursive:  

L

L

Take the Turing Machine      that accepts  M L

     halts on any input M

If      accepts then reject 

If      rejects then accept 

M

M
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Therefore: 

L recursive 

But we know: 

L not recursively enumerable 

thus, not recursive 

CONTRADICTION! 

Therefore,     is not recursive L

End of proof 
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Recursive 

Recursively Enumerable 

Non Recursively Enumerable 

L

L


